
ClearCase-NJ-QuickRef.doc v1.6++ July 26, 2004

Software Configuration Management at Acme Widget Company - NJ

ClearCase Quick Reference [Unix]
This document is available online via the AWC ClearCase home page, http://devnfs1/dist/ClearCase

Command (or URL) Description
A. Setting up your basic environment

1

$ type cleartool ||
 PATH=/usr/atria/bin:$PATH
add local scripts to your path:
$ PATH=$PATH:/dist/ClearCase/usr/bin

If your machine does not have the ClearCase commands available, set PATH
yourself. For SunOS, your access is from your personal Sun workstation; for Linux,
use the machine devserv1. Second directory is for local tools Tim has written.

2 $ alias ct=cleartool No one likes to type a long command name. Aliases work in ksh and bash.

3 $ id –a # newgrp vob_two if need be

Ensure your primary group is vob_two; if not, use newgrp command to change:
newgrp vob_two (this invokes a sub-shell). All AWC-NJ ClearCase work
requires you to be in the correct Unix group, with umask 2. Some projects (like
BlackBox) might have their own ClearCase group other than vob_two.

4 $ cleartool # with no arguments
Be aware of cleartool with no arguments—you enter a mode in which its
commands are entered to it directly and you are not in a shell. This is usually less
convenient (no shell command line editing), so quit.

B. Getting familiar with views and VOB’s
11 $ ct lsvob | grep –i vista Show (VISTA) VOB’s available in your region. Ones marked with * are mounted.
12 $ ct mount /vobs/example Ensure the VOB you want to use is mounted by ClearCase on your machine.

13 $ ct lsview –s | grep $LOGNAME See what views are defined for you; most view names contain a user ID and usually
a project (like LOD) and task, and sometimes a platform suffix (_NT).

14 $ ct setview viewname Set a view context to the view you want to use. This invokes a sub-shell.
15 $ cd /vobs/example Go to the VOB root directory to access your files.

16 $ umask 022 # or 002 To collaborate with colleagues, make sure all files you create are readable by group
(a previous step ensures that your primary group is vob_two). Or writable?

17 $ ct pwv Show me what view context I am in, if any, i.e. my “current view.”
18 $ ct catcs List the configuration specification (“cspec”) of my view.

C. Working with files in your view—the most common commands
21 $ cd directory Move around anywhere with the /vobs tree, or elsewhere.

22 $ ls –l Show the files in $PWD using normal Unix command. Look at permissions on the
file; they’re not writable or editable until you check them out.

23 $ ct checkout –unr foo.c Check out foo.c for editing; use the -unr option if someone else has it reserved.
24 $ touch temp.c; make Create a view-private file. Build in a view, creating .o view-private files.
25 $ ct ls –l Show the files in $PWD and how ClearCase sees them (the version, if private, etc).

26
$ cleardiff foo.c@@/main/LATEST foo.c
$ xcleardiff <args> # for graphical output

Use command to show differences between files. In this example, show the changes
from the most recent checked in file on /main branch to my checked out file.

27 $ ct uncheckout foo.c Un-checkout the file if you don’t want to change it.
28 $ ct checkin foo.c Check-in file to save your changes. Check-in files often (better backups!).

29
$ ct co . && ct mkelem temp.c &&
 ct ci temp.c && ct ci .

Create a new file element (a “file in a VOB”) using the view-private file temp.c
that you copied into the directory from somewhere else.

30
$ ct co . && ct mkdir newdir &&
 ct ci . Create a new directory element (a “file in a VOB”) to add new files to.

31
$ ct co . && ct mv foo.c FOO.c &&
 ct ci .

Rename a file in VOB—note that you must checkout the directory first, since you
are modifying the contents of the directory. Then check the directory back in too!

32
$ ct co . && ct rmname foo.c &&
 ct ci .

“Remove” or “delete” a file in VOB. Directory must be checked out, like for mv.
Use with caution.

D. Using the ClearCase online help, tutorial, and printed documentation
41 $ ct man [–g] [command-name] Use (graphical) man page tool. Omit the -g option if you want plain text output.
42 $ ct help [command-name] List a syntax summary of all cleartool commands, or just on one.
43 $ hyperhelp cc_tut.hlp Start the ClearCase graphical tutorial system.
44 $ ct apropros merge Show info about the “merge” topic, like the Unix command apropos(1) does.
45 http://devnfs1/dist/ClearCase/Manuals URL to directory of PDF files of “printed” versions of ClearCase user manuals.

- 2 -

ClearCase-NJ-QuickRef.doc v1.6++ July 26, 2004

E. Getting information about the change history of files
51 $ ct lsco –l –recurse –user tgill List all checkouts in this vob, in entire directory below $PWD, for the user tgill.
52 $ ct lsvtree [–g] foo.c [Graphically] show the version tree information for the file element named foo.c.
53 $ ct lshistory –g Show history of activity for current directory, graphically.
54 $ xclearcase General graphical tool for browsing source code and other tasks in ClearCase.

F. Other useful commands—use ct man command for full syntax
61 $ ct lstype –kind brtype Show the branch type objects defined for the current vob.
62 $ ct lstype –kind lbtype Show the label type objects defined for the current vob.
63 $ ct find . –version brtype "(aa)" \

 -print List file versions that exist on branch type aa for the current directory sub-tree.

G. Power user mechanisms in ClearCase

71
$ cd /vobs/example/foo.c@@ &&
 find . –type f &&
 find . –type d

Change directory to the root of the version tree for the element foo.c in the vob
example, and then list all the versions for that element, followed by all the
branches. This shows the power of version-extended pathnames.

72
$ cd /view &&
 diff default/vobs/example/foo.c \
 vobadm/vobs/example/foo.c

Change directory to the view root directory and use that mechanism to easily
compare the version of the file foo.c in the two different views, default and
vobadm. The views have to be active on your machine for this view-extended
pathname access to different views to work: use ct lsview to check (asterisks
show active views).

73

$ cd /view &&
 dircmp \
 -s –d \
 default/vobs/<your-vob> \
 <your-view>/vobs/<your-vob> \
 | uniq

A quick way to see which files are different between the work in your view and the
/main/LATEST code for the vob you are working on. The -d option shows the
changes (in diff(1) format) within files that exist in both views.

H. Local Acme Widget Company - NJ ClearCase tools
81 $ PATH=$PATH:/dist/share/ClearCase/usr/bin Make local scripts from the ClearCase administrator available to you.
82 $ releaseDiff -? Local script that shows difference between 2 labeled application releases.
83 $ applyLabel -? Local script that applies a label to a VOB.
84 $ showMerges Local script to quickly and succinctly show merges needed from other views.
84 $ report-CC-problem <failing-command> Request help from ClearCase administrator with a command that does not work.

85
$. /dist/Cle*/usr/quick-functions;
cc_f

Define some ksh (Korn shell) functions for quick invocation of common ClearCase
commands. Use the function named cc_f to show all functions or some subset,
based on the optional argument matching a string in the comment for a function.

I. Merging tools & idioms
91 $ clearmrgman Manages the merging of versions graphically: easiest interface.
92 $ xclearcase Another way to approach merging graphically
93 $ xcleardiff (Compare and/or) merge files graphically
94 $ ct lsvtree –g <file> Use graphical version tree browser to merge a single file.
95 $ ct merge [-g] <args> Merge files with the command line. Not recommend for most developers.
96 $ ct findmerge <args> Complicated tool to determine which files have to be merged.

97
$ ct findmerge /vobs/<your-vob-dir> \
 -type d -fversion \
 <branch_merging_from> -merge

A typical command to merge directories, from some branch <branch_merging_from> into
your current view. Should be done before merging files, if you have added any files
or directories to your vob. An example of the –fversion option is
.../nj_bugfix_1.1 to merge the latest code on the a bug fix branch.

98
$ ct findmerge /vobs/<your-vob> \
 -type f -fversion \
 <branch_merging_from> -okgmerge

A typical command to merge files, from some branch <branch_merging_from> into your
current view. The -okgmerge option requests that ClearCase attempt automatic
merging but requires you to approve each merge before it completes..

K. Other Helpful ClearCase Documentation
Most developers do not seem to like to read manuals, but when they do, they appreciate knowing which ones, or which parts, are the most useful for them.
 Since there are 4,000+ pages of ClearCase manuals, this section provides links (clickable when this document is browsed as a PDF file in your browser)

to the most useful sections of Rational’s ClearCase manuals (in my opinion), and other references.

101 Part of Chapter 1, “Introduction to ClearCase ”, from
the Rel. 3 (1996) ClearCase Concepts manual: 13 pp.

An excellent overview of ClearCase concepts—the best single place to get started.
(Too bad Rational removed it from the documentation in later releases.)

102 A public web page from Sweden: 7 pp. A reasonable, short overview of ClearCase from a user’s perspective.

103 §5.1 to §5.3 in Chapter 5, “Working on a Team,” in the
Working in Base ClearCase manual: 18 pp.

A good introduction to working with on a development team using ClearCase,
working with branches, and doing merges.

104 Chapter 14 in the Managing Software Projects manual
(Unix or Windows edition): 12 pp. A more detailed overview of how merging works and typical merging scenarios.

